Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
Med Oncol ; 41(5): 120, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643333

RESUMO

Gastric cancer (GC) is a serious malignant tumour with a high mortality rate and a poor prognosis. Recently, emerging evidence has suggested that N6-methyladenosine (m6A) modification plays a crucial regulatory role in cancer progression. However, the exact role of m6A regulatory factors FTO in GC is unclear. First, the expression of m6A methylation-related regulatory factors in clinical samples and the clinical data of the corresponding patients were obtained from The Cancer Genome Atlas (TCGA-STAD) dataset, and correlation analysis between FTO expression and patient clinicopathological parameters was subsequently performed. qRT-PCR, immunohistochemistry (IHC) and western blotting (WB) were used to verify FTO expression in GC. CCK-8, EdU, flow cytometry and transwell assays were used to evaluate the effect of FTO on the behaviour of GC cells. Transcriptome sequencing and RNA immunoprecipitation analysis were used to explore the potential regulatory mechanisms mediated by FTO. FTO was highly expressed in GC tissues and cells, and high expression of FTO predicted a worse prognosis than low expression. Functionally, overexpression of FTO promoted the proliferation, migration and invasion of GC cells but inhibited cell apoptosis. Mechanistically, we found that FTO is upregulated in GC and promotes GC progression by modulating the expression of MAP4K4. Taken together, our findings provide new insights into the effects of FTO-mediated m6A demethylation and could lead to the development of new strategies for GC monitoring and aggressive treatment.


Assuntos
Adenina , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Desmetilação , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
2.
Biosens Bioelectron ; 256: 116276, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599073

RESUMO

Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA Catalítico , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Metalocenos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Humanos , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Nitrilas/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/química , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/química , Nanoestruturas/química , Compostos Ferrosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
3.
Biochem Soc Trans ; 52(2): 707-717, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629637

RESUMO

The RNA modification N6-methyladenosine (m6A) is conserved across eukaryotes, and profoundly influences RNA metabolism, including regulating RNA stability. METTL3 and METTL14, together with several accessory components, form a 'writer' complex catalysing m6A modification. Conversely, FTO and ALKBH5 function as demethylases, rendering m6A dynamic. Key to understanding the functional significance of m6A is its 'reader' proteins, exemplified by YTH-domain-containing proteins (YTHDFs) canonical reader and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) non-canonical reader. These proteins play a crucial role in determining RNA stability: YTHDFs mainly promote mRNA degradation through different cytoplasmic pathways, whereas IGF2BPs function to maintain mRNA stability. Additionally, YTHDC1 functions within the nucleus to degrade or protect certain m6A-containing RNAs, and other non-canonical readers also contribute to RNA stability regulation. Notably, m6A regulates retrotransposon LINE1 RNA stability and/or transcription via multiple mechanisms. However, conflicting observations underscore the complexities underlying m6A's regulation of RNA stability depending upon the RNA sequence/structure context, developmental stage, and/or cellular environment. Understanding the interplay between m6A and other RNA regulatory elements is pivotal in deciphering the multifaceted roles m6A plays in RNA stability regulation and broader cellular biology.


Assuntos
Adenosina , Adenosina/análogos & derivados , Estabilidade de RNA , Proteínas de Ligação a RNA , Adenosina/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Metiltransferases/metabolismo , RNA/metabolismo , RNA/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Processamento Pós-Transcricional do RNA , 60697
4.
CNS Neurosci Ther ; 30(3): e14636, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38430221

RESUMO

OBJECTIVES: FTO is known to be involved in cerebral ischemia/reperfusion (I/R) injury. However, its related specific mechanisms during this condition warrant further investigations. This study aimed at exploring the impacts of FTO and the FYN/DRP1 axis on mitochondrial fission, oxidative stress (OS), and ferroptosis in cerebral I/R injury and the underlying mechanisms. METHODS: The cerebral I/R models were established in mice via the temporary middle cerebral artery occlusion/reperfusion (tMCAO/R) and hypoxia/reoxygenation models were induced in mouse hippocampal neurons via oxygen-glucose deprivation/reoxygenation (OGD/R). After the gain- and loss-of-function assays, related gene expression was detected, along with the examination of mitochondrial fission, OS- and ferroptosis-related marker levels, neuronal degeneration and cerebral infarction, and cell viability and apoptosis. The binding of FTO to FYN, m6A modification levels of FYN, and the interaction between FYN and Drp1 were evaluated. RESULTS: FTO was downregulated and FYN was upregulated in tMCAO/R mouse models and OGD/R cell models. FTO overexpression inhibited mitochondrial fission, OS, and ferroptosis to suppress cerebral I/R injury in mice, which was reversed by further overexpressing FYN. FTO overexpression also suppressed mitochondrial fission and ferroptosis to increase cell survival and inhibit cell apoptosis in OGD/R cell models, which was aggravated by additionally inhibiting DRP1. FTO overexpression inhibited FYN expression via the m6A modification to inactive Drp1 signaling, thus reducing mitochondrial fission and ferroptosis and enhancing cell viability in cells. CONCLUSIONS: FTO overexpression suppressed FYN expression through m6A modification, thereby subduing Drp1 activity and relieving cerebral I/R injury.


Assuntos
Isquemia Encefálica , Ferroptose , Traumatismo por Reperfusão , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
5.
J Ovarian Res ; 17(1): 62, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491479

RESUMO

Premature ovarian failure (POF) is a devastating condition for women under 40 years old. Chemotherapy, especially the use of cisplatin, has been demonstrated to promote the apoptosis of granulosa cells in primary and secondary follicles, leading to POF. Our previous studies demonstrated that fat mass- and obesity-associated (FTO) plays an essential role in protecting granulosa cells from cisplatin-induced cytotoxicity. Various studies have suggested that the Hippo/YAP signalling pathway plays a significant role in regulating cell apoptosis and proliferation. Additionally, YAP1 is the main downstream target of the Hippo signalling pathway and is negatively regulated by the Hippo signalling pathway. However, whether the Hippo/YAP signalling pathway is involved in the protective effect of FTO on granulosa cells has not been determined. In this study, we found that after cisplatin treatment, the apoptosis of granulosa cells increased in a concentration-dependent manner, accompanied by the downregulation of FTO and YAP1. Furthermore, overexpression of FTO decreased cisplatin-induced granulosa cell apoptosis, inhibited the Hippo/YAP kinase cascade-induced phosphorylation of YAP1, and promoted the entry of YAP1 into the nucleus. The downstream targets of YAP1 (CTGF, CYR61, and ANKRD1) were also increased. Si-RNA-mediated downregulation of FTO promoted cisplatin-induced granulosa cell apoptosis, activated the Hippo/YAP kinase cascade, and inhibited the YAP1 entry into the nucleus. These effects were completely reversed by the small molecule inhibitor of YAP1-verteporfin (VP). Taken together, these data suggested that FTO-YAP1 plays a positive role in regulating the proliferation of injured granulosa cells induced by cisplatin.


Assuntos
Neoplasias , Transdução de Sinais , Feminino , Humanos , Adulto , Cisplatino/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Células da Granulosa/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
6.
Cell Mol Biol Lett ; 29(1): 36, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486141

RESUMO

BACKGROUND: Macrophage activation may play a crucial role in the increased susceptibility of obese individuals to acute lung injury (ALI). Dysregulation of miRNA, which is involved in various inflammatory diseases, is often observed in obesity. This study aimed to investigate the role of miR-192 in lipopolysaccharide (LPS)-induced ALI in obese mice and its mechanism of dysregulation in obesity. METHODS: Human lung tissues were obtained from obese patients (BMI ≥ 30.0 kg/m2) and control patients (BMI 18.5-24.9 kg/m2). An obese mouse model was established by feeding a high-fat diet (HFD), followed by intratracheal instillation of LPS to induce ALI. Pulmonary macrophages of obese mice were depleted through intratracheal instillation of clodronate liposomes. The expression of miR-192 was examined in lung tissues, primary alveolar macrophages (AMs), and the mouse alveolar macrophage cell line (MH-S) using RT-qPCR. m6A quantification and RIP assays helped determine the cause of miR-192 dysregulation. miR-192 agomir and antagomir were used to investigate its function in mice and MH-S cells. Bioinformatics and dual-luciferase reporter gene assays were used to explore the downstream targets of miR-192. RESULTS: In obese mice, depletion of macrophages significantly alleviated lung tissue inflammation and injury, regardless of LPS challenge. miR-192 expression in lung tissues and alveolar macrophages was diminished during obesity and further decreased with LPS stimulation. Obesity-induced overexpression of FTO decreased the m6A modification of pri-miR-192, inhibiting the generation of miR-192. In vitro, inhibition of miR-192 enhanced LPS-induced polarization of M1 macrophages and activation of the AKT/ NF-κB inflammatory pathway, while overexpression of miR-192 suppressed these reactions. BIG1 was confirmed as a target gene of miR-192, and its overexpression offset the protective effects of miR-192. In vivo, when miR-192 was overexpressed in obese mice, the activation of pulmonary macrophages and the extent of lung injury were significantly improved upon LPS challenge. CONCLUSIONS: Our study indicates that obesity-induced downregulation of miR-192 expression exacerbates LPS-induced ALI by promoting macrophage activation. Targeting macrophages and miR-192 may provide new therapeutic avenues for obesity-associated ALI.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Regulação para Baixo , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos , Camundongos Obesos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/complicações , Obesidade/genética , Transdução de Sinais
7.
J Cancer Res Clin Oncol ; 150(3): 131, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491196

RESUMO

BACKGROUND: As the most abundant modification in eukaryotic messenger RNAs (mRNAs), N6-methyladenosine (m6A) plays vital roles in many biological processes. METHODS: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and transcriptomic RNA sequencing (RNA-seq) were used to screen for m6A targets in esophageal cancer cells and patients. The role of m6A RNA methylase in esophageal cancer was also analyzed using bioinformatics. In vitro and in vivo experiments were used to analyze gene expression and function. CCK-8, colony formation, cell apoptosis and immunofluorescence staining assays were performed to evaluate the proliferation, migration and invasion of esophageal cancer cells, respectively. Western blot analysis, RNA stability, RIP and luciferase reporter assays were performed to elucidate the underlying mechanism involved. RESULTS: We found that the m6A demethylase FTO was significantly upregulated in esophageal cancer cell lines and patient tissues. In vivo and in vitro assays demonstrated that FTO was involved in the proliferation and apoptosis of esophageal cancer cells. Moreover, we found that the m6A methyltransferase METTL14 negatively regulates FTO function in esophageal cancer progression. FTO alone is not related to the prognosis of esophageal cancer, and its function is antagonized by METTL14. By using transcriptome-wide m6A-seq and RNA-seq assays, we revealed that AKT3 is a downstream target of FTO and acts in concert to regulate the tumorigenesis and metastasis of esophageal cancer. Taken together, these findings provide insight into m6A-mediated tumorigenesis in esophageal cancer and could lead to the design of new therapeutic strategies.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Neoplasias Esofágicas , Metiltransferases , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Desmetilação , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
FASEB J ; 38(5): e23436, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430461

RESUMO

Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-ß1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-ß1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-ß1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-ß1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-ß1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.


Assuntos
Adenina/análogos & derivados , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Rim/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Obstrução Ureteral/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Desmetilação , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
9.
Int J Biol Sci ; 20(5): 1617-1633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481810

RESUMO

In rheumatoid arthritis (RA), a debilitating autoimmune disorder marked by chronic synovial inflammation and progressive cartilage degradation, fibroblast-like synoviocytes (FLS) are key pathogenic players. Current treatments targeting these cells are limited. Our study focused on the Fat Mass and Obesity-associated protein (FTO), known for its roles in cell proliferation and inflammatory response modulation, and its involvement in RA. We specifically examined the inflammatory regulatory roles of FTO and CMPK2, a mitochondrial DNA synthesis protein, in FLS. Utilizing a combination of in vitro and in vivo methods, including FTO inhibition and gene knockdown, we aimed to understand FTO's influence on RA progression and chondrocyte functionality. Our findings showed that increased FTO expression in RA synovial cells enhanced their proliferation and migration and decreased senescence and apoptosis. Inhibiting FTO significantly slowed the disease progression in our models. Our research also highlighted that the FTO-CMPK2 pathway plays a crucial role in regulating synovial inflammation through the mtDNA-mediated cGAS/STING pathway, affecting chondrocyte homeostasis. This study indicates that targeting the FTO-CMPK2 axis could be a promising new therapeutic strategy for managing RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Proliferação de Células/genética , Homeostase/genética , Fibroblastos/metabolismo , Cartilagem/metabolismo , Células Cultivadas , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
10.
J Am Chem Soc ; 146(11): 7803-7810, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445613

RESUMO

N6-methyladenosine (m6A) is an important modified nucleoside in cellular RNA associated with multiple cellular processes and is implicated in diseases. The enzymes associated with the dynamic installation and removal of m6A are heavily investigated targets for drug research, which requires detailed knowledge of the recognition modes of m6A by proteins. Here, we use atomic mutagenesis of m6A to systematically investigate the mechanisms of the two human m6A demethylase enzymes FTO and ALKBH5 and the binding modes of YTH reader proteins YTHDF2/DC1/DC2. Atomic mutagenesis refers to atom-specific changes that are introduced by chemical synthesis, such as the replacement of nitrogen by carbon atoms. Synthetic RNA oligonucleotides containing site-specifically incorporated 1-deaza-, 3-deaza-, and 7-deaza-m6A nucleosides were prepared by solid-phase synthesis and their RNA binding and demethylation by recombinant proteins were evaluated. We found distinct differences in substrate recognition and transformation and revealed structural preferences for the enzymatic activity. The deaza m6A analogues introduced in this work will be useful probes for other proteins in m6A research.


Assuntos
Adenosina/análogos & derivados , RNA , Humanos , RNA/química , Mutagênese , Proteínas Recombinantes , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
11.
Ecotoxicol Environ Saf ; 272: 116067, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325270

RESUMO

In order to comprehend the underlying mechanisms contributing to the development and exacerbation of asthma resulting from exposure to fine particulate matter (PM2.5), we established an asthmatic model in fat mass and obesity-associated gene knockdown mice subjected to PM2.5 exposure. Histological analyses using hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining revealed that the down-regulation of the fat mass and obesity-associated gene (Fto) expression significantly ameliorated the pathophysiological alterations observed in asthmatic mice exposed to PM2.5. Furthermore, the down-regulation of Fto gene expression effectively attenuated damage to the airway epithelial barrier. Additionally, employing in vivo and in vitro models, we elucidated that PM2.5 modulated FTO expression by inducing oxidative stress. Asthmatic mice exposed to PM2.5 exhibited elevated Fto expression, which correlated with increased levels of reactive oxygen species. Similarly, when cells were exposed to PM2.5, FTO expression was up-regulated in a ROS-dependent manner. Notably, the administration of N-acetyl cysteine successfully reversed the PM2.5-induced elevation in FTO expression. Concurrently, we performed transcriptome-wide Methylated RNA immunoprecipitation Sequencing (MeRIP-seq) analysis subsequent to PM2.5 exposure. Through the implementation of Gene Set Enrichment Analysis and m6A-IP-qPCR, we successfully identified inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) as a target gene regulated by FTO. Interestingly, exposure to PM2.5 led to increased expression of IKBKB, while m6A modification on IKBKB mRNA was reduced. Furthermore, our investigation revealed that PM2.5 also regulated IKBKB through oxidative stress. Significantly, the down-regulation of IKBKB effectively mitigated epithelial barrier damage in cells exposed to PM2.5 by modulating nuclear factor-kappa B (NF-κB) signaling. Importantly, we discovered that decreased m6A modification on IKBKB mRNA facilitated by FTO enhanced its stability, consequently resulting in up-regulation of IKBKB expression. Collectively, our findings propose a novel role for FTO in the regulation of IKBKB through m6A-dependent mRNA stability in the context of PM2.5-induced oxidative stress. Therefore, it is conceivable that the utilization of antioxidants or inhibition of FTO could represent potential therapeutic strategies for the management of asthma exacerbated by PM2.5 exposure.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Asma , Quinase I-kappa B , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Asma/induzido quimicamente , Asma/genética , Quinase I-kappa B/metabolismo , Obesidade , Estresse Oxidativo/genética , Material Particulado/toxicidade , Estabilidade de RNA , RNA Mensageiro/metabolismo
12.
Neurobiol Learn Mem ; 210: 107903, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403011

RESUMO

Formation of long-term memories requires learning-induced changes in both transcription and translation. Epitranscriptomic modifications of RNA recently emerged as critical regulators of RNA dynamics, whereby adenosine methylation (m6A) regulates translation, mRNA stability, mRNA localization, and memory formation. Prior work demonstrated a pro-memory phenotype of m6A, as loss of m6A impairs and loss of the m6A/m demethylase FTO improves memory formation. Critically, these experiments focused exclusively on aversive memory tasks and were only performed in male mice. Here we show that the task type and sex of the animal alter effects of m6A on memory, whereby FTO-depletion impaired object location memory in male mice, in contrast to the previously reported beneficial effects of FTO depletion on aversive memory. Additionally, we show that female mice have no change in performance after FTO depletion, demonstrating that sex of the mouse is a critical variable for understanding how m6A contributes to memory formation. Our study provides the first evidence for FTO regulation of non-aversive spatial memory and sexspecific effects of m6A, suggesting that identification of differentially methylated targets in each sex and task will be critical for understanding how epitranscriptomic modifications regulate memory.


Assuntos
Adenosina , RNA , Masculino , Feminino , Animais , Camundongos , RNA Mensageiro/metabolismo , Metilação , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
13.
Redox Biol ; 70: 103067, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316068

RESUMO

Doxorubicin (DOX)-induced cardiotoxicity seriously limits its clinical applicability, and no therapeutic interventions are available. Ferroptosis, an iron-dependent regulated cell death characterised by lipid peroxidation, plays a pivotal role in DOX-induced cardiotoxicity. N6-methyladenosine (m6A) methylation is the most frequent type of RNA modification and involved in DOX-induced ferroptosis, however, its underlying mechanism remains unclear. P21 was recently found to inhibit ferroptosis by interacting with Nrf2 and is regulated in a P53-dependent or independent manner, such as through m6A modification. In the present study, we investigated the mechanism underlying m6A modification in DOX-induced ferroptosis by focusing on P21. Our results show that fat mass and obesity-associated protein (FTO) down-regulation was associated with DOX-induced cardiotoxicity. FTO over-expression significantly improved cardiac function and cell viability in DOX-treated mouse hearts and H9C2 cells. FTO over-expression significantly inhibited DOX-induced ferroptosis, and the Fer-1 inhibition of ferroptosis significantly reduced DOX-induced cardiotoxicity. P21 was significantly upregulated by FTO and activated Nrf2, playing a crucial role in the anti-ferroptotic effect. FTO upregulated P21/Nrf2 in a P53-dependent manner by mediating the demethylation of P53 or in a P53-independent manner by mediating P21/Nrf2 directly. Human antigen R (HuR) is crucial for FTO-mediated regulation of ferroptosis and P53-P21/Nrf2. Notably, we also found that P21 inhibition in turn inhibited HuR and P53 expression, while HuR inhibition further inhibited FTO expression. RNA immunoprecipitation assay showed that HuR binds to the transcripts of FTO and itself. Collectively, FTO inhibited DOX-induced ferroptosis via P21/Nrf2 activation by mediating the m6A demethylation of P53 or P21/Nrf2 in a HuR-dependent manner and constituted a positive feedback loop with HuR and P53-P21. Our findings provide novel insight into key functional mechanisms associated with DOX-induced cardiotoxicity and elucidate a possible therapeutic approach.


Assuntos
Adenina/análogos & derivados , Cardiotoxicidade , Ferroptose , Camundongos , Animais , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ferroptose/genética , Miócitos Cardíacos/metabolismo , Doxorrubicina/efeitos adversos , RNA , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
14.
J Pharm Pharmacol ; 76(3): 283-294, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38243394

RESUMO

OBJECTIVES: The purpose of this study is to investigate whether fat mass and obesity-associated protein (FTO) and NOL1/NOP2/Sun domain family member 2 (NSUN2) mediated RNA methylation is associated with RA pathology. METHODS: We studied the anti-rheumatoid arthritis (RA) mechanism mediated by FTO and NSUN2 in RA samples and collagen-induced arthritis (CIA) rats using real time qPCR (RT-qPCR), western blot, immunofluorescence, and other methods. KEY FINDINGS: The expression of NSUN2 was significantly increased in both RA patients and CIA rats compared with normal controls. Knockdown of NSUN2 blocked the Wnt/ß-catenin signaling pathway and inhibited RA pathological factors such as MMP3, fibronectin, and interleukins. FTO overexpression inhibited RA by inhibiting the expression of NSUN2, up-regulating the level of SFRP1 protein, and blocking the Wnt/ß-catenin signaling pathway. NSUN2 overexpression interfered with the inhibitory effects of FTO on the Wnt/ß-catenin signaling pathway and RA pathology, which further verified that FTO inhibited RA through the NSUN2/SFRP1/Wnt/ß-catenin signal axis. CONCLUSIONS: FTO and NSUN2 are important factors of RA, and this work provides new potential diagnostic biomarkers and therapeutic targets for RA. We also reveal a gene expression regulation pattern of the interaction between m6A and m5C. revealing the pathogenesis of RA from the perspective of RNA methylation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Ratos , Animais , beta Catenina/metabolismo , Artrite Reumatoide/patologia , Regulação da Expressão Gênica , Via de Sinalização Wnt , Obesidade , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
15.
EMBO Mol Med ; 16(2): 294-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297099

RESUMO

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Quinase 2 Dependente de Ciclina , Diabetes Mellitus , Retinopatia Diabética , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , RNA , Peixe-Zebra/genética
16.
FEBS J ; 291(7): 1545-1559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38245815

RESUMO

Recent studies have revealed the involvement of RNA m6A modification in embryonic development; however, the relationship between aberrant RNA m6A modification and unexplained recurrent spontaneous abortion (URSA) remains unclear. In this study, we analysed the level of RNA m6A modification in trophoblasts using dot blot, RNA m6A quantification, and MeRIP assays. By integrating data from the GEO database, RNA-Seq, and MeRIP-Seq, we examined the aberrant expression of m6A methyltransferases and their downstream molecules in chorionic villus (placental) tissues. RNA pull-down, RIP, and electrophoretic mobility shift assay were used to analyse the binding relationship between the YTHDC1 protein and MEG3. Additionally, RNA stability and BrU immunoprecipitation chase assays were utilised to elucidate the regulation of MEG3 stability by YTHDC1. ChIP and DNA pull-down RNA experiments were performed to elucidate the mechanism by which MEG3 targets EZH2 to the TGF-ß1 promoter. The results showed that the expression of the m6A demethylase FTO protein was significantly increased in URSA trophoblasts, leading to inhibition of the MEG3 m6A modification and weakening of the stabilising effect of the m6A binding protein YTHDC1 on MEG3. Furthermore, MEG3 was found to bind simultaneously with the EZH2 protein and the TGF-ß1 gene promoter, enabling the localisation of EZH2 protein to the TGF-ß1 gene promoter and subsequent inhibition of TGF-ß1 gene expression. In summary, our findings elucidate the mechanism by which FTO protein regulates the MEG3-TGF-ß signalling pathway, thereby suppressing trophoblast invasion and proliferation in URSA trophoblast cells. These findings provide new insights for the treatment of URSA.


Assuntos
Aborto Espontâneo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Feminino , Humanos , Gravidez , Aborto Espontâneo/genética , Aborto Espontâneo/metabolismo , Adenosina/genética , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Placenta , Estabilidade de RNA , Fator de Crescimento Transformador beta1/genética
17.
Cell Commun Signal ; 22(1): 79, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291517

RESUMO

N1-methyladenosine (m1A) is a post-transcriptionally modified RNA molecule that plays a pivotal role in the regulation of various biological functions and activities. Especially in cancer cell invasion, proliferation and cell cycle regulation. Over recent years, there has been a burgeoning interest in investigating the m1A modification of RNA. Most studies have focused on the regulation of m1A in cancer enrichment areas and different regions. This review provides a comprehensive overview of the methodologies employed for the detection of m1A modification. Furthermore, this review delves into the key players in m1A modification, known as the "writers," "erasers," and "readers." m1A modification is modified by the m1A methyltransferases, or writers, such as TRMT6, TRMT61A, TRMT61B, TRMT10C, NML, and, removed by the demethylases, or erasers, including FTO and ALKBH1, ALKBH3. It is recognized by m1A-binding proteins YTHDF1, TYHDF2, TYHDF3, and TYHDC1, also known as "readers". Additionally, we explore the intricate relationship between m1A modification and its regulators and their implications for the development and progression of specific types of cancer, we discuss how m1A modification can potentially facilitate the discovery of novel approaches for cancer diagnosis, treatment, and prognosis. Our summary of m1A methylated adenosine modification detection methods and regulatory mechanisms in various cancers provides useful insights for cancer diagnosis, treatment, and prognosis. Video Abstract.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , RNA/genética , RNA/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Metilação , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
18.
Life Sci ; 339: 122421, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232799

RESUMO

AIMS: In this study, we investigated the role of the FTO gene in pancreatic ß-cell biology and its association with type 2 diabetes (T2D). To address this issue, human pancreatic islets and rat INS-1 (832/13) cells were used to perform gene silencing, overexpression, and functional analysis of FTO expression; levels of FTO were also measured in serum samples obtained from diabetic and obese individuals. RESULTS: The findings revealed that FTO expression was reduced in islets from hyperglycemic/diabetic donors compared to normal donors. This reduction correlated with decreased INS and GLUT1 expression and increased PDX1, GCK, and SNAP25 expression. Silencing of Fto in INS-1 cells impaired insulin release and mitochondrial ATP production and increased apoptosis in pro-apoptotic cytokine-treated cells. However, glucose uptake and reactive oxygen species production rates remained unaffected. Downregulation of key ß-cell genes was observed following Fto-silencing, while Glut2 and Gck were unaffected. RNA-seq analysis identified several dysregulated genes involved in metal ion binding, calcium ion binding, and protein serine/threonine kinase activity. Furthermore, our findings showed that Pdx1 or Mafa-silencing did not influence FTO protein expression. Overexpression of FTO in human islets promoted insulin secretion and upregulated INS, PDX1, MAFA, and GLUT1 expression. Serum FTO levels did not significantly differ between individuals with diabetes or obesity and their healthy counterparts. CONCLUSION: These findings suggest that FTO plays a crucial role in ß-cell survival, metabolism, and function and point to a potential therapeutic utility of FTO in T2D patients.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Ratos , Animais , Secreção de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/genética , Obesidade/metabolismo , Glucose/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
19.
Adv Sci (Weinh) ; 11(6): e2307206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041494

RESUMO

Cells constantly sense and respond to not only biochemical but also biomechanical changes in their microenvironment, demanding for dynamic metabolic adaptation. ECM stiffening is a hallmark of cancer aggressiveness, while survival under substrate detachment also associates with poor prognosis. Mechanisms underlying this, non-linear mechano-response of tumor cells may reveal potential double-hit targets for cancers. Here, an integrin-GSK3ß-FTO-mTOR axis is reported, that can integrate stiffness sensing to ensure both the growth advantage endowed by rigid substrate and cell death resistance under matrix detachment. It is demonstrated that substrate stiffening can activate mTORC1 and elevate mTOR level through integrins and GSK3ß-FTO mediated mRNA m6 A modification, promoting anabolic metabolism. Inhibition of this axis upon ECM detachment enhances autophagy, which in turn conveys resilience of tumor cells to anoikis, as it is demonstrated in human breast ductal carcinoma in situ (DCIS) and mice malignant ascites. Collectively, these results highlight the biphasic mechano-regulation of cellular metabolism, with implications in tumor growth under stiffened conditions such as fibrosis, as well as in anoikis-resistance during cancer metastasis.


Assuntos
Anoikis , Neoplasias , Humanos , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Glicogênio Sintase Quinase 3 beta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/patologia , Integrinas/metabolismo , Microambiente Tumoral , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
20.
Environ Res ; 244: 117783, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048862

RESUMO

Although bone marrow mesenchymal stem cells (BM-MSCs)-derived exosomes have been reported to be closely associated with acute myeloid leukemia (AML) progression and chemo-resistance, but its detailed functions and molecular mechanisms have not been fully delineated. Besides, serum RNA m6A demethylase fat mass and obesity-associated protein (FTO)-containing exosomes are deemed as important indicators for cancer progression, and this study aimed to investigate the role of BM-MSCs-derived FTO-exosomes in regulating the malignant phenotypes of AML cells. Here, we verified that BM-MSCs-derived exosomes delivered FTO to promote cancer aggressiveness, stem cell properties and Cytosine arabinoside (Ara-C)-chemoresistance in AML cells, and the underlying mechanisms were also uncovered. Our data suggested that BM-MSCs-derived FTO-exo demethylated m6A modifications in the m6A-modified LncRNA GLCC1 to facilitate its combination with the RNA-binding protein Hu antigen R (HuR), which further increased the stability and expression levels of LncRNA GLCC1. In addition, LncRNA GLCC1 was verified as an oncogene to facilitate cell proliferation and enhanced Ara-C-chemoresistance in AML cells. Further experiments confirmed that demethylated LncRNA GLCC1 served as scaffold to facilitate the formation of the IGF2 mRNA binding protein 1 (IGF2BP1)-c-Myc complex, which led to the activation of the downstream tumor-promoting c-Myc-associated signal pathways. Moreover, our rescuing experiments validated that the promoting effects of BM-MSCs-derived FTO-exo on cancer aggressiveness and drug resistance in AML cells were abrogated by silencing LncRNA GLCC1 and c-Myc. Thus, the present firstly investigated the functions and underlying mechanisms by which BM-MSCs-derived FTO-exo enhanced cancer aggressiveness and chemo-resistance in AML by modulating the LncRNA GLCC1-IGF2BP1-c-Myc signal pathway, and our work provided novel biomarkers for the diagnosis, treatment and therapy of AML in clinic.


Assuntos
Adenina/análogos & derivados , Exossomos , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Exossomos/metabolismo , Exossomos/patologia , Resistencia a Medicamentos Antineoplásicos , RNA Longo não Codificante/metabolismo , Leucemia Mieloide Aguda/genética , Citarabina/farmacologia , Citarabina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Desmetilação , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...